
fluid-cicb Documentation
Release v0.0.0

Joe Schoonover

Apr 07, 2022

QUICK START

1 Ephemeral RCC Tutorial 3
1.1 Demo . 3
1.2 Next Steps . 9

2 Set Up your Repository 11
2.1 Containerize your application with Singularity . 11
2.2 Define Tests . 12

3 Customize the Test Cluster 15
3.1 Getting Started . 15
3.2 Customize Partitions . 17

4 Architecture Reference 19
4.1 Overview . 19
4.2 Workflow . 19

5 The RCC Run CI File 21
5.1 Overview . 21
5.2 Example . 21

6 Command Line Interface 23
6.1 Usage . 23
6.2 CLI Arguments . 23

7 Benchmark Dataset Schema 25

8 Environment Variables 27
8.1 Example Job Script (Singularity) . 27

9 Support 29

10 Indices and tables 31

i

ii

fluid-cicb Documentation, Release v0.0.0

RCC Run is a tool that benchmarks high performance computing (HPC) and research computing (RC) applications on
ephemeral resources on Google Cloud.

The motivation for developing rcc-run is to support continuous integration and continuous benchmarking (CI/CB) of
HPC and RC applications at scale on Google Cloud. By using rcc-run as a build step with Google Cloud Build, devel-
opers can automate running tests on GPU accelerated and multi-VM platforms hosted on Google Cloud. Information
about the each test, including the system architecture, software version (git sha), build id, and application runtime are
recorded and can be saved to Big Query. This allows developers to create an auditable trail of data that comments on
the performance of an application over time and accross various hardware.

RCC Run is made available as a publicly accessible docker container and is ideally suited as a builder within Google
Cloud Build.

QUICK START 1

https://cloud.google.com/build/docs/cloud-builders
https://cloud.google.com/build
https://cloud.google.com/build

fluid-cicb Documentation, Release v0.0.0

2 QUICK START

CHAPTER

ONE

EPHEMERAL RCC TUTORIAL

RCC Run can be used to create ephemeral compute resources for testing HPC applications and to record information
about the test for later analysis. This quickstart guide will introduce you to the necessary ingredients for configuring
application tests with rcc-run, using an ephemeral Research Computing Cluster (RCC).

1.1 Demo

You will start by using the rcc-ephemeral example provided in the rcc-run repository. This example creates a Singularity
image with the cowsay program installed on it and then runs tests for this image on an ephemeral RCC cluster. You
will learn how to set up your Google Cloud project and create the necessary resources to support application testing,
benchmarking, and logging.

1.1.1 Google Cloud Project Setup

To complete this tutorial, you will need to have an active project on Google Cloud. Sign up and create your first project
by visiting https://console.cloud.google.com

Once your project is ready, open Cloud Shell

You will need to activate the following Google Cloud APIs

• Compute Engine

• Cloud Build

• Big Query

• Identity & Access Management (IAM)

gcloud config set project PROJECT-ID
gcloud services enable compute.googleapis.com
gcloud services enable bigquery.googleapis.com
gcloud services enable iam.googleapis.com
gcloud services enable cloudbuild.googleapis.com

3

https://console.cloud.google.com
https://shell.cloud.google.com/?show=terminal

fluid-cicb Documentation, Release v0.0.0

1.1.2 Create a rcc-run Docker image

The rcc-run application is a Cloud Build builder. A Cloud builder is a Docker image that provides an environment and
entrypoint application for carrying out a step in a Cloud Build pipeline. You can create the rcc-run docker image and
store it in your Google Cloud project’s Container Registry.

Open Cloud Shell and clone the rcc-run repository.

$ git clone https://github.com/FluidNumerics/rcc-run.git ~/rcc-run

Once you’ve cloned the repository, navigate to the root directory of the repo and trigger a build of the docker image.

$ cd ~/rcc-run/
$ gcloud builds submit . --config=ci/cloudbuild.yaml --substitutions=SHORT_SHA=latest

This will cause Google Cloud build to create the rcc-run docker image gcr.io/${PROJECT_ID}/rcc-run:latest
that you can then use in your project’s builds.

1.1.3 Create the CI/CB Dataset

The CI/CB dataset is a Big Query dataset that is used to store information about each test run with rcc-run. This
includes runtimes for each execution command used to test your application. The rcc-run repository comes with a
terraform module that can create this dataset for your project. We’ve also included an example under the examples/
rcc-ephemeral directory that you will use for the rest of this tutorial.

Navigate to the examples/rcc-ephemeral/ci/build_iac directory

$ cd ~/rcc-run/examples/rcc-ephemeral/ci/build_iac

The ci/build_iac subdirectory contains the Terraform infrastructure as code for provisioning a VPC network, firewall
rules, service account, and the Big Query dataset that all support using rcc-run. This example Terraform module is a
template for creating these resources, and the fluid.auto.tfvars file in this directory is used to concretize certain
variables in the template, so that you can deploy the resources in your project.

Open fluid.auto.tfvars in a text editor and set <project> to your Google Cloud Project ID. The command below
will quickly do the search and replace for you.

$ sed -i "s/<project>/$(gcloud config get-value project)/g" fluid.auto.tfvars

Now, you will execute a workflow typical of Terraform deployments to initialize, validate, plan, and deploy. All of the
commands are shown below, but you should review the output from each command before executing the next.

$ terraform init
$ terraform validate
$ terraform plan
$ terraform apply --auto-approve

Once this completes, you’re ready to run a build using rcc-run.

4 Chapter 1. Ephemeral RCC Tutorial

https://cloud.google.com/build/docs/cloud-builders
https://cloud.google.com/container-registry
https://shell.cloud.google.com/?show=terminal
https://cloud.google.com/bigquery
https://terraform.io

fluid-cicb Documentation, Release v0.0.0

1.1.4 Manually Trigger a build

Cloud Build pipelines for a repository are specified in a build configuration file written in YAML syntax. In this
example, three build steps are provided that create a Docker image, create a Singularity image, and test the Singularity
image on an ephemeral RCC cluster. A singularity image is created since, currently, rcc-run only supports testing
of GCE VM images and Singularity images. However, as you can see, Singularity can convert a Docker image to a
Singularity image that can be passed to rcc-run.

steps:

- id: Build Docker Image
name: 'gcr.io/cloud-builders/docker'
args: ['build',

'.',
'-t',
'gcr.io/${PROJECT_ID}/cowsay:latest'

]

- id: Build Singularity Image
name: 'quay.io/singularity/singularity:v3.7.1'
args: ['build',

'cowsay.sif',
'docker-daemon://gcr.io/${PROJECT_ID}/cowsay:latest']

- id: Benchmark Application
name: 'gcr.io/research-computing-cloud/rcc-run'
args:
- '--build-id=${BUILD_ID}'
- '--git-sha=${COMMIT_SHA}'
- '--artifact-type=singularity'
- '--singularity-image=cowsay.sif'
- '--project=${PROJECT_ID}'
- '--zone=${_ZONE}'
- '--cluster-type=rcc-ephemeral'
- '--rcc-tfvars=ci/fluid.auto.tfvars'
- '--save-results'

timeout: 1800s

substitutions:
_ZONE: 'us-west1-b'

To manually trigger a build, you can use the gcloud builds submit command in your cloud shell. Navigate to the
rcc-ephemeral example directory, and submit the build

$ cd ~/rcc-run/examples/rcc-ephemeral/
$ gcloud builds submit . --config=ci/cloudbuild.yaml

Note that the cloud build can be run asynchronously by passing the --async flag as well. If you run asynchronously,
you can view the status of the build at the Cloud Build Console.

1.1. Demo 5

https://cloud.google.com/build/docs/build-config-file-schema
https://console.cloud.google.com/cloud-build/builds

fluid-cicb Documentation, Release v0.0.0

1.1.5 View Data in Big Query

Once the build is complete, the run-time and other data for each execution command is posted to the fluid_cicb dataset
in Big Query. In your browser, navigate to Big Query.

In the data explorer panel on the left-hand side, find your Google Cloud project and expand the dropdown menu.

Find the fluid-cicb dataset and the app_runs table. Once you’ve selected the app_runs table, select preview.

At this point, you now have a dataset hosted in Google Cloud. The rcc-run build step with Google Cloud Build will
allow you to automate testing and benchmarking of your application and will post results to this dataset.

6 Chapter 1. Ephemeral RCC Tutorial

https://console.cloud.google.com/bigquery

fluid-cicb Documentation, Release v0.0.0

1.1.6 Dashboarding and other post-processing

From here, it is helpful to visualize results. There are a number of solutions available for visualizing data stored in Big
Query. Below are a couple dashboard examples using Data Studio with the fluid_cic data set, to give you an idea of
where you can take this.

Example Pass-Fail Report

Example Runtime Report

1.1. Demo 7

https://datastudio.google.com

fluid-cicb Documentation, Release v0.0.0

In addition to dashboarding, having a dataset that tracks the performance of your application over time and on a variety
of hardware can enable you to automatically check for performance regressions or uncovers performance portability
issues. You can write application in C#, Go, Java, Node.js, PHP, Python, and Ruby using the Big Query API to interact
with the dataset to add further post-processing and verification to your builds.

1.1.7 Delete Resources

If you’ve worked through this tutorial on a Google Cloud project where you will continue setting up a CI/CB workflow
for your application, you can keep using the resources you’ve created. However, if you need to tear down the resources
created during this tutorial, you can use the commands below

$ cd ~/rcc-run/examples/rcc-ephemeral/ci/build_iac
$ terraform destroy --auto-approve

8 Chapter 1. Ephemeral RCC Tutorial

https://cloud.google.com/bigquery/docs/reference/libraries

fluid-cicb Documentation, Release v0.0.0

1.2 Next Steps

• Set up your Git Repository

• Customize the Benchmarking Cluster

1.2. Next Steps 9

fluid-cicb Documentation, Release v0.0.0

10 Chapter 1. Ephemeral RCC Tutorial

CHAPTER

TWO

SET UP YOUR REPOSITORY

To use rcc-run, you need to have (at a minimum) a Google Cloud Build configuration file and a rcc-run pipeline file.
To help keep your repository organized, we recommend creating a subdirectory to host these files, e.g. ci/

Repository Root
o
|
|
o ci/
|\
| \
| \
| o cloudbuild.yaml
| |
| |
| o rcc-run.yaml

The cloudbuild.yaml configuration file specifies the steps necessary to build your application and includes a call
to rcc-run to test and benchmark your application. Currently, rcc-run is able to test Singularity and Google Compute
Engine (GCE) VM Images. If you’re able to create a Docker image for your application, you can easily convert to a
Singularity image within your build process before calling rcc-run.

The rcc-run.yaml pipeline file specifies a set of commands or scripts to execute, where to direct output, and the
compute partitions to run on.

2.1 Containerize your application with Singularity

Containers are a lightweight virtual environment where you install your application and all of it’s depedencies. They
are ideal for improving portability of your application and can help developers reproduce issues reported by their end
users. Singularity is a container format made specifically for high performance computing and research computing en-
vironments, where users often share common compute resources. Singularity has some advantages over other container
options, such as Docker, including built in support for exposing AMD and Nvidia GPUs and running on multi-VM /
cluster environments.

A Singularity image can be created by writing a Singularity definition file. The definition file is essentially a set of
instructions that dictate the container image to start from and the commands to run to install your application. We
recommend that you review the Singularity documentation to learn more about writing a Singularity definition file. If
you have not containerized your application yet, this is a good place to start.

Some users have already containerized their application with Docker. If you fall into this category, but would still like
to use rcc-run to test and benchmark your application, you can easily convert your Docker image to a Singularity image.
In your cloudbuild.yaml, you will simply add a step to call singularity build using the local docker-daemon

11

http://docs.ctrliq.com/ctrl-singularity-userdocs/3.7/definition_files.html

fluid-cicb Documentation, Release v0.0.0

as a source. The example below shows a two stage process that creates a Docker image and a Singularity image. After
the build completes, the Docker image is posted to Google Container Registry and the Singularity image is posted to
Google Cloud Storage.

steps:

- id: Build Docker Image
name: 'gcr.io/cloud-builders/docker'
args: ['build',

'.',
'-t',
'gcr.io/${PROJECT_ID}/cowsay:latest'

]

- id: Build Singularity Image
name: 'quay.io/singularity/singularity:v3.7.1'
args: ['build',

'cowsay.sif',
'docker-daemon://gcr.io/${PROJECT_ID}/cowsay:latest']

images: ['gcr.io/${PROJECT_ID}/cowsay:latest']

artifacts:
objects:
location: 'gs://my-singularity-bucket/latest'
paths: ['cowsay.sif']

2.2 Define Tests

Tests for your application are specified in the execution_command field of the rcc-run.yaml pipeline file. The rcc-
run build step is able to determine if the provided execution command is a script or a single command. This allows you
to either specify all of your tests in a set of scripts in your repository or set individual commands in the rcc-run.yaml
file. Currently, when using the rcc-ephemeral or rcc-static cluster types, you must specify a script to run; when
using the gce cluster type, you must specify individual commands.

To run tests, you need to create a script in your repository (e.g. test/hello_world.sh) and reference the path to this
script in your rcc-run.yaml file. In this case, the contents of the script would have the command(s) you want to run.

#!/bin/bash

singularity exec ${SINGULARITY_IMAGE} /usr/games/cowsay "Hello World"

The rcc-run.yaml then references this file in the execution_command field.

tests:
- command_group: "hello"
execution_command: "test/hello_world.sh"
output_directory: "hello/test"
partition: "c2-standard-8"
batch_options: "--ntasks=1 --cpus-per-task=1"

When writing your tests, keep in mind that you can use environment variables provided by rcc-run and you can also
use Slurm environment variables. Further, if you have additional environment variables that need to be defined during

12 Chapter 2. Set Up your Repository

https://cloud.google.com/container-registry
https://cloud.google.com/storage
https://hpcc.umd.edu/hpcc/help/slurmenv.html

fluid-cicb Documentation, Release v0.0.0

execution of your tests, you can use the ENV_FILE environment variable,

#!/bin/bash

singularity exec --env-file ${ENV_FILE} ${SINGULARITY_IMAGE} /usr/games/cowsay "Hello␣
→˓World"

The ENV_FILE is defined as the path to a file in your repository that defines a set of environment variables passed by
using the --env-file flag when running rcc-run

2.2. Define Tests 13

fluid-cicb Documentation, Release v0.0.0

14 Chapter 2. Set Up your Repository

CHAPTER

THREE

CUSTOMIZE THE TEST CLUSTER

When you use RCC-Run, an ephemeral RCC cluster is created with Terraform to run Slurm batch jobs on your behalf.
The RCC cluster is defined using the rcc-tf module. The default variable concretizations are provided in rcc-run/etc/rcc-
ephemeral/default/fluid.auto.tfvars. This default configuration provides you with a n1-standard-16 controller with a
1TB pd-ssd disk and a single compute partition, consisting of 5x c2-standard-8 instances.

The rcc-run builder provides a mechanism to customize the cluster so that you can define compute partitions that meet
your testing needs. You are able to add instances with GPUs, specify partitions for a heterogeneous cluster (see machine
types available on Google Cloud), specify the zone to deploy to, change the controller size, shape, and disk properties,
and even add a Lustre file system.

3.1 Getting Started

To customize the cluster, you can add a tfvars definition file that is similar to the rcc-run/etc/rcc-
ephemeral/default/fluid.auto.tfvars. For reference, the rcc-run/etc/rcc-ephemeral/io.tf file defines all of the variables
available for concretizing a rcc-ephemeral cluster.

It is recommended that you start by creating a file in your repository called rcc.auto.tfvars with the following
contents

cluster_name = "<name>"
project = "<project>"
zone = "<zone>"

controller_image = "<image>"
disable_controller_public_ips = false

login_node_count = 0

suspend_time = 2

compute_node_scopes = [
"https://www.googleapis.com/auth/cloud-platform"

]
partitions = [
{ name = "c2-standard-8"
machine_type = "c2-standard-8"
image = "<image>"
image_hyperthreads = true
static_node_count = 0

(continues on next page)

15

https://research-computing-cluster.readthedocs.io/en/latest/
https://terraform.io
https://github.com/FluidNumerics/rcc-tf
https://github.com/FluidNumerics/rcc-run/blob/main/etc/rcc-ephemeral/default/fluid.auto.tfvars
https://github.com/FluidNumerics/rcc-run/blob/main/etc/rcc-ephemeral/default/fluid.auto.tfvars
https://cloud.google.com/compute/docs/gpus
https://cloud.google.com/compute/docs/machine-types
https://cloud.google.com/compute/docs/machine-types
https://github.com/FluidNumerics/rcc-run/blob/main/etc/rcc-ephemeral/default/fluid.auto.tfvars
https://github.com/FluidNumerics/rcc-run/blob/main/etc/rcc-ephemeral/default/fluid.auto.tfvars
https://github.com/FluidNumerics/rcc-run/blob/main/etc/rcc-ephemeral/io.tf

fluid-cicb Documentation, Release v0.0.0

(continued from previous page)

max_node_count = 5
zone = "<zone>"
compute_disk_type = "pd-standard"
compute_disk_size_gb = 50
compute_labels = {}
cpu_platform = null
gpu_count = 0
gpu_type = null
gvnic = false
network_storage = []
preemptible_bursting = false
vpc_subnet = null
exclusive = false
enable_placement = false
regional_capacity = false
regional_policy = null
instance_template = null

},
]

create_filestore = false
create_lustre = false

You’ll notice that their are a few template variables in this example that are demarked by <>. The rcc-run build step
is able to substitute values for these variables at build-time based on options provided to the command lined interface.
The example above provides a good starting point with some of the necessary template variables in place. It is not
recommended to remove the template variables for <name>, <project>, <zone>, or <image>.

For your reference, template variables for rcc-ephemeral clusters that are substituted at run-time are given in the
table below.

Template Variable Value/CLI Option Description
<name> frun-{build-id}[0:7] Name of the ephemeral cluster
<project> –project Google Cloud Project ID
<zone> –zone Google Cloud zone
<image> –gce-image Google Compute Engine VM Image self-link
<build_id> –build-id Google Cloud Build build ID
<vpc_subnet> –vpc-subnet Google Cloud VPC Subnetwork
<service_account> –service-account Google Cloud Service Account email address

16 Chapter 3. Customize the Test Cluster

fluid-cicb Documentation, Release v0.0.0

3.2 Customize Partitions

Partitions are used to define the type of compute nodes available to you for testing. Each partition consists of a homo-
geneous pool of machines. While each partition has 22 variables to concretely define it, we’ll cover a few of the options
here to help you make informed decisions when defining partitions for testing.

3.2.1 name

The partition name is used to identify a homogeneous group of compute nodes. When writing your RCC Run CI File,
you will set the partition field to one of the partition names set in your tfvars file.

3.2.2 machine_type

The machine type refers to a Google Compute Engine machine type. If you define multiple partitions with differing
machine types, this gives you the ability to see how your code’s performance varies across different hardware

3.2.3 max_node_count

This is the maximum number of nodes that can be created in this partition. When tests are run, the cluster will auto-
matically manage provisioning compute nodes to run benchmarks and tear them down upon completion. Keep in mind
that you need to ensure that you have sufficient Quota for the machine type, gpus, and disks in the region that your
cluster is deployed to.

3.2.4 image

The image expects a self-link to a VM image for the cluster. It is recommended that you leave this field set to the
template variable "<image>" so that rcc-run can set this field for you. The default image that RCC uses is projects/
research-computing-cloud/global/images/family/rcc-run-foss, which includes Singularity and Open-
MPI 4.0.5.

3.2.5 gpu_type / gpu_count

The gpu_type field is used to set the type of GPU to attach to each compute node in the partition. Possible values are

• nvidia-tesla-k80

• nvidia-tesla-p100

• nvidia-tesla-v100

• nvidia-tesla-p4

• nvidia-tesla-t4

• nvidia-tesla-a100 (A2 instances only)

The gpu_count field is used to set the number of GPUs per machine in the partition. For most GPUs, you can set
this to 0, 1, 2, 4, or 8. Currently, GPUs must be used with an n1 machine type on Google Cloud (except for the A100
GPUs). Keep in mind that each GPU type is available in certain zones and that there are restrictions on the ratio of
vCPU to GPU.

3.2. Customize Partitions 17

https://cloud.google.com/compute/docs/machine-types
https://cloud.google.com/compute/quotas
https://cloud.google.com/compute/docs/accelerator-optimized-machines
https://cloud.google.com/compute/docs/accelerator-optimized-machines
https://cloud.google.com/compute/docs/accelerator-optimized-machines
https://cloud.google.com/compute/docs/gpus/gpu-regions-zones
https://cloud.google.com/compute/docs/gpus
https://cloud.google.com/compute/docs/gpus

fluid-cicb Documentation, Release v0.0.0

18 Chapter 3. Customize the Test Cluster

CHAPTER

FOUR

ARCHITECTURE REFERENCE

4.1 Overview

RCC Run is a docker image that is meant to be used as a build step in your repository’s Cloud Build pipeline. Currently,
RCC Run accepts only Google Compute Engine VM Images or Singularity Images as build artifacts that can be tested.
However, if you currently build Docker images, you can easily create a Singularity image from your Docker image.

4.2 Workflow

When fluid-run is called, it will provision an ephemeral Slurm controller for processing tests specified in your RCC
Run CI YAML. Once the controller is provisioned, the local workspace from Cloud Build is copied to the controller
and jobs are submitted and tracked by the cluster-workflow script.

When each job finishes, this script will align run-time, max memory used, exit code, stdout, stderr, and information
about the systems with each execution command is run on. When all jobs are finished, the workspace on the controller
is copied back to the Cloud Build workspace. In the last step, the recorded details about your tests are loaded up to
Big Query. By default, fluid-run will throw a non-zero exit code if any of your tests show a non-zero exit code; this
behavior can be overridden with the –ignore-exit-code flag.

19

https://cloud.google.com/build
https://github.com/FluidNumerics/fluid-run/blob/main/bin/cluster-workflow.py

fluid-cicb Documentation, Release v0.0.0

20 Chapter 4. Architecture Reference

CHAPTER

FIVE

THE RCC RUN CI FILE

5.1 Overview

The RCC Run CI File is a YAML or json file in your repository that specifies the tests/benchmarks you want to run
after building your code. Currently, this file consists of the a single list object tests that has the following attributes :

• execution_command This is the path to a script in your repository to run a specific test

• command_group The command group is used to group execution commands that are dependent. Execution
commands in the same command group are run sequentially in the order they are placed in the tests block,
unless the –ignore-job-dependencies flag is sent to rcc-run

• output_directory The directory on the cluster, relative a unique workspace, where the execution command
should be run.

• partition The compute partition to run the execution command under. See How to Customize the Cluster

• batch_options Options to send to Slurm sbatch to submit the job (excluding the --partition option)

5.2 Example

tests:
- command_group: "sleep"
execution_command: "test/sleep10.sh"
output_directory: "sleep"
partition: "c2-standard-8"
batch_options: "--ntasks=1 --cpus-per-task=1 --time=05:00"

- command_group: "cowsay"
execution_command: "test/hello.sh"
output_directory: "cowsay-hello"
partition: "c2-standard-8"
batch_options: "--ntasks=1 --cpus-per-task=1 --time=05:00"

- command_group: "cowsay"
execution_command: "test/ready.sh"
output_directory: "cowsay-ready"
partition: "c2-standard-8"
batch_options: "--ntasks=1 --cpus-per-task=1 --time=05:00"

21

https://slurm.schedmd.com/sbatch.html

fluid-cicb Documentation, Release v0.0.0

22 Chapter 5. The RCC Run CI File

CHAPTER

SIX

COMMAND LINE INTERFACE

6.1 Usage

The rcc-run container is intended to be used as a build step in Google Cloud Build. Once you create the rcc-run
container image, you can call it in your cloud build configuration file using something like the following:

- id: CI/CB
name: 'gcr.io/${PROJECT_ID}/rcc-run'
args:
- '--build-id=${BUILD_ID}'
- '--git-sha=${COMMIT_SHA}'
- '--singularity-image=cowsay.sif'
- '--project=${PROJECT_ID}'

In this example, a minimal set of arguments are provided to rcc-run to run tests on a singularity image called cowsay.sif.
By default, rcc-run looks for a CI file at ./rcc-run.yaml in your repository.

6.2 CLI Arguments

There are a number of options to customize the behavior of rcc-run. The table below provides a complete summary of
the arguments along with their default values.

23

fluid-cicb Documentation, Release v0.0.0

Argument Re-
quired

Artifact
Type

Default Value

–build-id Yes All “”
–cluster-type No All rcc-ephemeral
–git-sha Yes All “”
–ci-file No All ./rcc-run.yaml
–node-count No All 1
–machine-type No All c2-standard-8
–compiler No All “”
–target-arch No All “”
–gpu-count Yes All 0
–gpu-type Yes All “”
–nproc No All 1
–task-affinity Yes All “”
–mpi Yes All false
–vpc-subnet No All “”
–service-account No All rcc-run@${PROJECT}.iam.gserviceaccount.com
–artifact-type Yes All singularity
–singularity-image Yes singularity “”
–gce-image No All project/research-computing-cloud/global/images/rcc-

foss
–project Yes All “”
–zone No All us-west1-b
–rcc-controller Yes All “”
–rcc-tfvars No All ./fluid.auto.tfvars
–save-results No All false
–ignore-exit-code No All false
–ignore-job-
dependencies

No All false

This next table gives a description for each of the command line arguments.

24 Chapter 6. Command Line Interface

mailto:rcc-run@\protect \T1\textdollar \protect \T1\textbraceleft PROJECT\protect \T1\textbraceright .iam.gserviceaccount.com

CHAPTER

SEVEN

BENCHMARK DATASET SCHEMA

With each execution_command in your CI file, rcc-run will align variables about your build and testing environment
along with runtimes to create a fully auditable record of the execution. This allows you to naturally generate a database
over time that can track how your application performs over time and on all available hardware on Google Cloud.
Knowing this information is critical for optimizing costs for your applications on public cloud systems. The table
below provides an overview of the current schema.

Field name Type Mode Description
allocated_cpus INTEGER NULLABLE The number of CPUs that are allocated to run the execution_command.
allocated_gpus INTEGER NULLABLE The number of GPUs that are allocated to run the execution_command.
artifact_type STRING NULLABLE The type of artifact tested, e.g. ‘singualrity’, or ‘gce image’
batch_options STRING NULLABLE Additional options sent to the batch scheduler
command_group STRING REQUIRED An identifier to allow grouping of execution_commands in reporting.
execution_command STRING REQUIRED The full command used to execute this benchmark.
build_id STRING REQUIRED The Cloud Build build ID associated with this build.
machine_type STRING NULLABLE Node types as classified by the system provider.
gpu_type STRING NULLABLE The vendor and model name of the GPU (e.g. nvidia-tesla-v100)
gpu_count INTEGER NULLABLE The number of GPUs, per compute node, on this compute system.
node_count INTEGER NULLABLE The number of nodes used in testing.
datetime DATETIME REQUIRED The UTC date and time of the build.
exit_code INTEGER REQUIRED The system exit code thrown when executing the execution_command
git_sha STRING REQUIRED The git SHA associated with the version / commit being tested.
max_memory_gb FLOAT NULLABLE The maximum amount of memory used for the execution_command in GB.
stderr STRING NULLABLE Standard error produced from running execution command.
stdout STRING NULLABLE Standard output produced from running execution command.
partition STRING NULLABLE The name of the scheduler partition to run the job under.
runtime FLOAT NULLABLE The runtime for the execution_command in seconds.
compiler STRING NULLABLE Compiler name and version, e.g. gcc@10.2.0, used to build application.
target_arch STRING NULLABLE Architecture targeted by compiler during application build process.
controller_machine_type STRING NULLABLE Machine type used for the controller, for Slurm based test environments.
controller_disk_size_gb INTEGER NULLABLE The size of the controller disk in GB.
controller_disk_type STRING NULLABLE The type of disk used for the controller.
filestore BOOLEAN NULLABLE A flag to indicated if filestore is used for workspace.
filestore_tier STRING NULLABLE The filestore tier used for file IO.
filestore_capacity_gb INTEGER NULLABLE The size of the filestore disk capacity in GB.
lustre BOOLEAN NULLABLE A flag to indicated if lustre is used for workspace.
lustre_mds_node_count INTEGER NULLABLE Number of Lustre metadata servers
lustre_mds_machine_type STRING NULLABLE The machine type for the Lustre MDS servers.
lustre_mds_boot_disk_type STRING NULLABLE The boot disk type for the Lustre MDS servers.
lustre_mds_boot_disk_size_gb INTEGER NULLABLE The size of the Lustre boot disk in GB.

continues on next page

25

fluid-cicb Documentation, Release v0.0.0

Table 1 – continued from previous page
Field name Type Mode Description
lustre_mdt_disk_type STRING NULLABLE The mdt disk type for the Lustre MDS servers.
lustre_mdt_disk_size_gb INTEGER NULLABLE The size of the Lustre boot disk in GB.
lustre_mdt_per_mds INTEGER NULLABLE The number of metadata targets per MDS.
lustre_oss_node_count INTEGER NULLABLE Number of Lustre metadata servers
lustre_oss_machine_type STRING NULLABLE The machine type for the Lustre OSS servers.
lustre_oss_boot_disk_type STRING NULLABLE The boot disk type for the Lustre OSS servers.
lustre_oss_boot_disk_size_gb INTEGER NULLABLE The size of the Lustre boot disk in GB.
lustre_ost_disk_type STRING NULLABLE The ost disk type for the Lustre OSS servers.
lustre_ost_disk_size_gb INTEGER NULLABLE The size of the Lustre boot disk in GB.
lustre_ost_per_oss INTEGER NULLABLE The number of object storage targets per OSS.
compact_placement BOOLEAN NULLABLE A flag to indicate if compact placement is used.
gvnic BOOLEAN NULLABLE A flag to indicate if Google Virtual NIC is used.
lustre_image STRING NULLABLE The VM image used for the Lustre deployment.
vm_image STRING NULLABLE VM image used for the GCE instance running the fluid-cicb cluster.

26 Chapter 7. Benchmark Dataset Schema

CHAPTER

EIGHT

ENVIRONMENT VARIABLES

When running batch scripts on RCC style platforms some environment variables are provided for you to use during
runtime. Since RCC clusters use a Slurm job scheduler, you also have access to common Slurm environment variables
when –cluster-type=rcc-static or –cluster-type=rcc-ephemeral.

Variable Description
WORKSPACE The path to the working directory where your job is executed.
PROJECT The Google Cloud project hosting your test cluster.
GIT_SHA The git sha associated with the run test.
SINGULARITY_IMAGE The full path to the Singularity image on the test cluster.
ENV_FILE The full path to a file containing environment variable definitions

8.1 Example Job Script (Singularity)

When writing a job script to test your application, you can use the provided environment variables to reference the
working directory and the full path to the Singularity image produced during the build phase in Cloud Build. The
example below provides a basic demonstration for using environment variables in your test scripts.

#!/bin/bash

cd ${WORKSPACE}
spack load singularity
singularity exec --env-file ${ENV_FILE} ${SINGULARITY_IMAGE} /usr/games/cowsay "Great.. I
→˓'m self aware."

27

https://hpcc.umd.edu/hpcc/help/slurmenv.html

fluid-cicb Documentation, Release v0.0.0

28 Chapter 8. Environment Variables

CHAPTER

NINE

SUPPORT

29

fluid-cicb Documentation, Release v0.0.0

30 Chapter 9. Support

CHAPTER

TEN

INDICES AND TABLES

• genindex

• modindex

• search

31

	Ephemeral RCC Tutorial
	Demo
	Google Cloud Project Setup
	Create a rcc-run Docker image
	Create the CI/CB Dataset
	Manually Trigger a build
	View Data in Big Query
	Dashboarding and other post-processing
	Delete Resources

	Next Steps

	Set Up your Repository
	Containerize your application with Singularity
	Define Tests

	Customize the Test Cluster
	Getting Started
	Customize Partitions
	name
	machine_type
	max_node_count
	image
	gpu_type / gpu_count

	Architecture Reference
	Overview
	Workflow

	The RCC Run CI File
	Overview
	Example

	Command Line Interface
	Usage
	CLI Arguments

	Benchmark Dataset Schema
	Environment Variables
	Example Job Script (Singularity)

	Support
	Indices and tables

